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ABSTRACT
We apply the PolyBoRi framework for Gröbner bases com-
putations with Boolean polynomials to bit-valued problems
from algebraic cryptanalysis and formal verification.

First, we proposed zero-suppressed binary decision dia-
grams (ZDDs) as a suitable data structure for Boolean poly-
nomials. Utilizing the advantages of ZDDs we develop new
reduced normal form algorithms for linear lexicographical
lead rewriting systems. The latter play an important role in
modeling bit-valued components of digital systems.

Next, we reorder the variables in Boolean polynomial rings
with respect to the topology of digital components. This
brings computational algebra to digital circuits and small
scale crypto systems in the first place. We additionally pro-
pose an optimized topological ordering, which tends to keep
the intermediate results small. Thus, we successfully applied
the linear lexicographical lead techniques to non-trivial ex-
amples from formal verification of digital systems.

Finally, we evaluate the performance using benchmark ex-
amples from formal verification and cryptanalysis including
equivalence checking of a bit-level formulation of multiplier
components. Before we introduced topological orderings in
PolyBoRi, state of the art for the algebraic approach was
a bit-width of 4 for each factor. By combining our tech-
niques we raised this bound to 16, which is an important
step towards real-world applications.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation, Algorithms

General Terms
Algorithms, Theory

Keywords
Gröbner, normal forms, Boolean polynomials, cryptanalysis,
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1. INTRODUCTION
The central applications of this work are algebraic crypt-

analysis and formal verification on the top of PolyBoRi.
We developed the PolyBoRi framework for Gröbner bases
computations with Boolean polynomials [8, 7]. The latter
denote polynomials with coefficients in the field with two el-
ements and a maximal degree of one per variable. They are
in one-to-one correspondence with Boolean functions, which
motivates the use of polynomial techniques for bit-valued
problems from digital systems. In this context Bulygin and
Brickenstein had improved the state of the art in algebraic
cryptanalysis in [12]. They were able to attack small scale
AES cipher [14] from 8 to 64 bits for two rounds. This ar-
ticle presents the optimized normal form functions, which
form the basis of their algebraic attack.

First, we briefly describe zero-suppressed decision dia-
grams. They are suited for storing and manipulating Boolean
polynomials, but yield a different complexity behavior of the
basic polynomial routines. So, we had to reformulate central
algorithms, like the reduced normal form in Section 3. This
was already behind the scenes in [12].

Several research groups made considerable efforts to use
Gröbner bases for formal verification and satisfiability. These
past approaches focussed on various points: Tran and Vardi
[29] applied ideal theory to symbolic model checking. Clegg,
Edmonds, and Impagliazzo [15] combined Buchberger’s al-
gorithm [11] with backtracking. Condrat and Kalla [16] used
it to preprocess small subsystems. In contrast, we start with
decision diagrams from formal verification and continue with
algorithmic research on Gröbner bases on the top of these.
Finally, we present and analyze some timing results.

2. DECISION DIAGRAMS FOR BOOLEAN
GRÖBNER BASES

In this section we fix the notation, which we will use in
the algorithmic part of the paper. We give also a brief ex-
planation of basics from computational algebra and a rough
overview of zero-suppressed decision diagrams.

2.1 Algebraic Basics
We recall some algebraic basics, including classical notions

for the treatment of polynomial systems, as well as basic def-
initions and results from computational algebra. For a more
detailed treatment see [3, 21] and the references therein.

Let P = K[x1, . . . , xn], K a field, and let its set of mono-



mials {xα = xα1
1 · . . . · xαn

n |α ∈ Nn} be equipped with a
monomial ordering >. It is a well ordering, with the fol-
lowing additional property: if xα > xβ then xα+γ > xβ+γ ,
for γ ∈ Nn.

Let f =
P
α cα · x

α (cα ∈ Z2) a polynomial. Then

supp(f) = {xα|cα 6= 0}

is called the support of f .
If f 6= 0 then lm(f) denotes the leading monomial of f ,

the biggest monomial occurring in f with respect to “>”.
Moreover, we set tail(f) = f − lm(f).

If F ⊂ P is any subset, L(F ) denotes the leading ideal
of F , i. e. the ideal in P generated by {lm(f)|f ∈ F\{0}}.

We recall that a finite set G ⊂ P is called a Gröbner
basis of an ideal I ⊂ P , if G ⊂ I and {lm(g)|g ∈ G\{0}}
generates L(I) in the ring P .

Let f, h, g1, . . . gm ∈ P and G = {g1, . . . gm} a Gröbner
basis. We say, that h is the reduced normal form of f against
G, if h ≡ f mod 〈G〉 and supp(h) ∩ L(G) = ∅.

The reduced normal form is unique and we denote it as
REDNF(f,G). It does not depend on G itself, but only on
the ideal spanned by G.

Given a block ordering or product ordering > on P
with two blocks is given by 1 < i0 ≤ n and monomial or-
derings >1 on K[x1, . . . , xi0−1] and >2 on K[xi0 , . . . , xn]
satisfying for all monomials m1,m2 ∈ K[x1, . . . , xi0−1] and
n1, n2 ∈ K[xi0 , . . . , xn]: m1 · m2 > m2 · n2 if and only
if m1 >1 m2 or (m1 = m2 and n1 >2 n2). Orderings con-
sisting of arbitrary many blocks are constructed recursively.

A Boolean ring is not a polynomial ring, but isomorphic
to the factor ring Z2[x1, . . . , xn]/〈x2

1 +x1, . . . , x
2
n +xn〉. Ev-

ery class of it has a unique representation as a polynomial
in Z2[x1, . . . , xn] with a maximal degree of one per variable,
called a Boolean polynomial.

2.2 Zero-suppressed decision diagrams
The idea of using binary decision diagrams for represent-

ing Boolean polynomials is straight-forward. Obviously, con-
stant polynomials can be identified with the corresponding
terminal node, respectively. Polynomials of positive degree
contain at least one variable x. Since the degree per vari-
able is most one, we can write a Boolean polynomial p in the
form p = x ·p1 +p0. p1 and p0 are also Boolean polynomials,
which do not depend on x anymore. Identifying x with a de-
cision variable and assuming p1 and p0 to be representable
as binary decision diagrams, we can recursively generate a
diagram for p. We extensively elaborated the correspon-
dence between decision diagrams, Boolean polynomials, and
related objects in [8]. For decision diagram basics we refer
to [10, 4].

Definition 2.1 (Binary Decision Diagram).
A binary decision diagram (BDD) is a rooted, directed,
and acyclic graph with two terminal nodes {0, 1} and deci-
sion nodes. The latter have two ascending arcs (then and
else), each of which corresponding to the assignment of true
or false, respectively, to a given decision variable.

In case the variable order is constant over all paths start-
ing at the root and ending at a terminal node, we speak of
an ordered BDD.

Moreover, it is called reduced, if it contains no distinct
subgraphs, that are isomorphic as ordered binary decision
diagrams.

Furthermore, bT (then branch) and bE (else branch)
indicate the (sub-)diagrams outgoing from the terminus of
the then- and else-arc, respectively, of the root node of b
(Figure 2(a)).

(a) Not reduced (b) Reduced

Figure 1: Reduced and not reduced diagrams

A non-reduced binary decision diagram can be reduced as
illustrated by Figure 1: The diagrams outgoing from the
z-nodes in this Figure 1(a) are isomorphic. The correctly
reduced version of this graph is the one in Figure 1(b).

The decision variable associated to a diagram node z
is denoted by var(z) and the decision variable associated to
the root node of a diagram b is denoted by topvar(b) .

Having the set V = {x1, . . . , xn} of all decision variables,
we identify each variable xi with its index i, and conse-
quently, top(b) denotes the index of the root node.
If the root node is a terminal node (0 or 1), we define
top(b) = n+ 1.

For two BDDs b1, b0, which do not depend on the decision
variable x, the if-then-else operator ite(x, b1, b0) denotes
the BDD c, which is obtained by introducing a new node
associated to the variable x, s. th. cT = b1, and cE = b0.
Note, that the index of x has to be less than top(b0), top(b1).

Following, we describe a variant [27] which we use for
representing Boolean polynomials.

Definition 2.2. A reduced ordered decision diagram is
called zero-suppressed decision diagram (ZDD), if no
then arc leads to the zero terminal node.

Definition 2.2 is illustrated in Figure 2(b). The introductory
example from Figure 1(b) was extended by an artificial z-
node, which is forbidden for ZDDs.

Definition 2.3. Let b be a ZDD and let p be a directed
path in b starting at the root node of b n1 = root(b) ending
with nk ∈ {0, 1}.

Then the sequence p is called a terminated path of b.
If nk = 1, it is called a valid path.

For a valid path p, we define

• the set of p: set(p) = {var(ni)|ai ∈ AT } ,

• the monomial or term of p: term(p) =
Q
v∈set(p) v.

We denote the set of all valid paths in b by paths(b). We
identify a ZDD with a polynomial

polynomial(b) :=
X

p valid path

0@ Y
v∈set(p)

v

1A .
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Figure 2: Basic decision diagram structures
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Figure 3: The monomial x · z is associated with the
highlighted path. The complete diagram represents
the polynomial x · y + x · z + y · z.

Definition 2.3 means, that the set/monomial associated to a
valid path only contains variables of nodes, where the path
follows the outgoing then edge. From Figure 3 we see
that the terms of a Boolean polynomials can be uniquely
represented by the valid paths of a ZDD and vice versa.

It is also possible to refer to these diagrams as functional
decision diagrams (FDDs, see [24]). While we store the term
structure of a polynomial in a ZDD, it results in the same
graph, when one stores the polynomial function in an FDD.
From a computational algebra point of view, our descrip-
tion is more natural (and also used in [27, 13]). From a
verification point of view the FDD is the more appropriate
description.

3. LINEAR LEXICOGRAPHICAL
LEAD REDUCTIONS

In applications like formal verification of digital circuits
and cryptography it is important to calculate lexicograph-
ical normal forms against a polynomial system F . Often,
the latter is of the form F = {fi|i ∈ {1, . . . ,m}}, where
the fi are Boolean polynomials with pairwise different lin-
ear lexicographical leading terms li = lm(fi), for some in-
teger m ≤ n. If deg(li) = 1 : ∃ji with li = xji , we call F
a linear lexicographical lead rewriting system.

Theorem 3.1. A linear lexicographical lead rewriting sys-
tem is a lexicographical Boolean Gröbner basis.

The theorem can be proved analogously to the proof of [12,
Theorem 3.1].

The normal form computation against F can be done in
a recursive ZDD computation, while this is probably not
the case for calculating general normal forms. We present
algorithms for lexicographical normal forms against systems
of Boolean polynomials with linear lexicographical leading
terms. For the performance of the PolyBoRi framework, it
was an essential step to find these algorithms.

The first problem we encounter is, that decision diagram
based approaches usually deal with a fixed number of argu-
ments, while F may contain arbitrary many arguments. So
we need to encode all elements of F into a single ZDD. This
can be done in the following way.

To simplify the presentation of the algorithm, we will as-
sume, that ij < ij+1 for all j ∈ {1, . . . ,m− 1}. As shown in
Figure 4 we encode F by the decision diagram

ite(xi1 , ite(xi2 , . . . ite(xim , 1, tail(fm)) . . . , tail(f2)), tail(f1)) .

In this way, we can iterate over the leading terms of F by

lm(f)

lm(g)tail(f)

lm(h)tail(g)

1tail(h)

Figure 4: Encoding of system of polynomials with
linear, lexicographical leading terms

always following the then-branch. The elements of F can be
reconstructed by accessing the respective else-branch.

For this encoding of F we define the reduction algorithm
for a Boolean polynomial against F ∪{x2

1 +x1, . . . , x
2
n+xn}

in algorithm 1 (llnf). Note that p?q denotes the Boolean

Algorithm 1 llnf: lexicographical normal form against sys-
tems with linear leads
Input: p Boolean polynomial, F system of Boolean polyno-

mials with pairwise different linear lexicographical leading
terms encoded as described above

Output: result REDNF(p, F ∪ {x2
1 + x1, . . . , x

2
n + xn})

if F = {1} or p ∈ {0, 1} then
return p

if top(p) > top(F ) then
return llnf(p, FT )

if top(p) < top(F ) then
return topvar(F )? llnf(pT , F ) + llnf(pE , F )

/* now we know top(p) = top(F ) */
return llnf(FE , FT )? llnf(pT , FT ) + llnf(pE , FT )

multiplication of two Boolean polynomials p and q:

p?q = REDNF(p · q, {x2
1 + x1, . . . , x

2
n + xn}) .

It is again a Boolean polynomial.



There exists a variant of algorithm 1, which we call llnf∗.
It replaces the final return-statement, namely

llnf(FE , FT )? llnf(pT , FT ) + llnf(pE , FT ) ,

by llnf∗(FE?pT +pE , FT ). In the case of equal top variables
this second variant recursively calls itself only once, instead
of three times.

Remark 3.2. Algorithms operating directly on binary de-
cision diagrams are usually recursive. Typically in each call
top increases. Since it can only take n+1 distinct values, the
recursion depth is bounded. So algorithms will always ter-
minate (when using only recursion following this principle,
conditions and terminating function call). Moreover, we can
always prove correctness by induction on the minimal top of
all function arguments.

Theorem 3.3. Let F be as stated above, p a Boolean poly-
nomial, then algorithm 1 terminates and returns a reduced
normal form of p against F ∪ {x2

1 + x1, . . . , x
2
n + xn}.

Proof. For constant polynomials or the empty set the
algorithm is obviously correct. Let deg(p) > 0 and F 6= ∅.
Since the recursive calls terminate (see Remark 3.2), the
algorithm terminates by induction on min(top(p), top(F )).
We have to show: llnf(p, F ) is reduced against F ∪ {x2

1 +
x1, . . . , x

2
n + xn} and lies in the same residue class like p

modulo F , {x2
1+x1, . . . , x

2
n+xn}. Without loss of generality

we assume top(p) = top(F ) = j1. We can further assume
by induction, that the theorem holds for the recursive calls.
Therefore,

llnf(FE , FT )? llnf(pT , FT ) + llnf(pE , FT ) =

llnf(tail(f1), {f2, . . . , fm})?llnf(pT , {f2, . . . , fm})+
llnf(pE , {f2, . . . , fm}) ≡

xj1 · p
T + (pE) = p

where the equivalence holds modulo f2, . . . , fm and the field
equations x2

1 = x1, . . . , x
2
n = xn. Hence, the result lies in

the same residue class. Now, we show that it is reduced:
Since the recursive call returns polynomials which are

reduced against {x2
1 + x1, . . . , x

2
n + xn}, they are Boolean

polynomials and their addition and Boolean multiplication
yields also Boolean polynomials (so reduced against {x2

1 +
x1, . . . , x

2
n + xn}). It remains to show that the result of

the algorithm is reduced against F . In a similar way, we
use the fact that the recursive call returns normal forms of
FE , pT , pE against

{f2, . . . , fm, x2
1 + x1, . . . , x

2
n + xn}.

A polynomial p is reduced against {f2, . . . , fm}, if and only
if it does not involve any xjk for k > 1. So the sum and
(Boolean) product of two such polynomials are again re-
duced against F . Since the arguments to the recursive calls
do not involve any variable xk with k ≤ j1, their reduced
lexicographical normal form against {f2, . . . , fm} ∪ {x2

1 +
x1, . . . , x

2
n + xn} does not involve such variables either. In

particular, it does not involve xj1 = lm(f1). Hence, these
recursive results are actually reduced against

F ∪ {x2
1 + x1, . . . , x

2
n + xn}

and do not involve any xj1 as well as their (Boolean) product
and sum.

In the case, that F is not only a (Boolean) Gröbner basis,
but also reduced, we can simplify the algorithm by leaving
out the reduction of the else branches of F . This idea is

Algorithm 2 llnfredsb: lexicographical normal form
against systems with linear leads

Input: p Boolean polynomial, F reduced Boolean Gröbner
basis, encoded as above

Output: result llnfredsb(p, F ∪ {x2
1 + x1, . . . , x

2
n + xn})

if F = {1} or p ∈ {0, 1} then
return p

if top(p) > top(F ) then
return llnfredsb(p, FT )

if top(p) < top(F ) then
return topvar(F )? llnfredsb(pT , F ) + llnfredsb(pE , F )

/* now we know top(p) = top(F ) */
return FE? llnfredsb(pT , FT ) + llnfredsb(pE , FT )

given in algorithm 2.

4. TOPOLOGICAL ORDERINGS
FOR DIGITAL SYSTEMS

We designed the PolyBoRi framework for computing Gröb-
ner bases of systems derived from problems in verification of
models for integrated circuits. Often, these systems feature
a large number of variables and polynomial equations (sev-
eral thousands and more). So it was a primary design goal to
achieve a compact representation for this data. On the other
hand, despite better properties of the case of Boolean poly-
nomials [29], it is known that there exist systems with an
even smaller number of variables (e. g. 50 variables), whose
Gröbner bases are hard to compute [19].

First, we have a look at Boolean formulas, the kind of
formulas defining Boolean functions.

Definition 4.1. We define a map φ from formulas in
propositional logic to Boolean functions by providing a trans-
lation from the basis system not (¬), or (∨), true (True).
For any formulas p, q we define the following rules

φ(p ∨ q) := φ(p) · φ(q)
φ(¬p) := 1− φ(p)

φ(True) := 0
(1)

Recursively, every formula in propositional logic can be trans-
lated into Boolean functions, as {∨,¬,True} forms a basis
system in propositional logic (it generates the Boolean alge-
bra).

4.1 Integrated circuits topology
We start applying computational algebra to combinatorial

networks, i. e. networks containing no memory of previous
states (flip-flops). Combinatorial networks consist of signals,
which can be modeled as Boolean variables and logic gates
defining a functional relation between these variables.

Each logic gate takes several input signals and transforms
them into exactly one output signal. For example an OR-
gate transforms two signals y, z into a third signal x by
x := y ∨ z. So the variable x depends on y and z. In some
sense x is used to replace larger expressions. Using the alge-
braic mapping (see Definition 4.1) from propositional logic
this dependency is equivalent to the Boolean polynomial



f := x − y · z. We would like to have a monomial order-
ing, where the application of the reduced normal form of
a Boolean polynomial g against the system consisting of f
and the field polynomials replaces all occurrences of x by
y · z. So, we need to have lm(f) = x (or x > y · z). For
a lexicographical ordering this is equivalent to x > y and
x > z. In this way, each logic gate gives a condition for
the monomial ordering. We call a monomial ordering topo-
logical, if it matches these conditions. A variable ordering
is called topological, if the lexicographical ordering with re-
spect to this variable ordering is topological. A topological
ordering has not necessarily to be a lexicographical or elimi-
nation ordering. It can even be realized by a weighted degree
ordering.

Usually there exist several topological variable orderings.
Since every combinatorial network forms a directed acyclic
graph, there always exists such a variable ordering. It can
be determined by algorithm 3.

Algorithm 3 Calculating topological ordering on G,V

Input: G set of logic gates, V set of variables
Output: return tuple of variables in V topologically or-

dered w. r. t. G
if V = ∅ then

return V
choose v ∈ V , where for all g ∈ G: v is not an input of g
if ∃g ∈ G: v is the output of g then
G = G\{g}

return (v) + topological ordering(G,V \{v}) /* concate-
nation of tuples */

Theorem 4.2. Algorithm 3 is correct and terminates

Proof. The only critical point of the algorithm is the
validity of the “choose” statement. Initially we can choose
just any signal and then follow the flow of signal until we
reach some end point (which is not an input to a gate). This
is a valid candidate for v. Here we use the fact, that the
combinatorial network forms a directed acyclic graph, i. e. it
contains no loops. It is easy to see, that taking v as biggest
variable does not contradict any topology condition from
the gates: If there exists a g with output v, then making
v the biggest variable of all satisfies the condition that v is
bigger than the gates input variables variables. The other
gates/equations/polynomials do not involve v, so correctness
can be satisfied recursively. Since in each recursion step |V |
decreases, there can only be finitely many recursion steps
and hence the algorithm terminates.

Corollary 4.3. For each combinatorial network there
exists a topological variable ordering.

Remark 4.4. Topological orderings form the precondition
for formal verification with computational algebra. For most
other orderings like degree orderings or lexicographical or-
derings with a generic ordering of variables, it takes already
seconds to do an equivalence check on a 4-bit multiplier and
6-bits turn out to be unfeasible. Using advanced techniques
and (even optimized) topological orderings, we were able to
verify a 16 × 16-bit multiplier in 24 seconds, as it is shown
in Table 2. This is remarkable, as the the case of multipli-
ers is very difficult. As stated by our project partners [30],
using the industrial standard SAT-solvers, problems larger

than 10 × 10 can hardly be handled. We want to remark
at this point, that we indeed provide some extra information
to the Gröbner basis/normal form algorithm in form of a
topological ordering.

The results on combinatorial networks can be generalized
to sequential circuits (integrated circuits containing state
information) in the following way: Sequential circuits prob-
lems can be mapped to propositional logic by using a bound
t for the time steps (bounded model checking). A signal x is
identified with t distinct Boolean variables. In this way we
can construct a directed, acyclic graph and apply the tech-
niques presented for combinatorial circuit in this section.

4.2 Optimized topological ordering
Algorithm 3 contains many choices. In general the topo-

logical ordering is not unique. Moreover, the choices can
influence the strategy of the algorithms. Hence, the ques-
tion arises, whether some topological orderings have better
properties than others.

We recursively define the rank of a signal:

rank(v) = max({rank(w) + 1 |w ∈ dep(v)} ∪ {0}) ,

where dep(v) denotes the set of outputs depending on v:

dep(v) = {w | ∃ gate g : v is input of g, w is output of g} .

There exists a wide variety of rank concepts, e. g. in [20]
and [23]. Sometimes also the term “level” is used synony-
mously.

This reflects the usual behaviour, that term substitution
blows up with every substitution step and we want to keep
the intermediate results during the normal form computa-
tion as slim as possible.

It seems preferable to sort the variables in ascending order
with respect to their rank.

Theorem 4.5. Let > be an ordering on the variables,
which is compatible with the rank-function:

∀i, j : rank(xi) > rank(xj)⇒ xi < xj

Then > is a topological variable ordering.

Proof. If a variable or signal v forms an input value on
the gate determining w as output-function, then we have

rank(v) ≥ rank(w) + 1⇒ rank(v) > rank(w)⇒ v < w,

which proves the claim by the definition of the topological
variable ordering.

Theorem 4.6. For each i from 0 to d, where d is given
as d := max({rank(xi)|i ∈ {1, . . . , n}}), we set

Xi = {xj | rank(xj) = i}.

We define the following orderings:

• On each set of variables Xi we define >i a monomial
ordering for Z2[Xi]. On Z2[x1, . . . , xn] we define >p
to be the product ordering of >0, >1, . . . , >d.

• Let >h be an arbitrary monomial ordering on the poly-
nomial ring Z2[x1, . . . , xn]. Let a, b ∈ Z2[x1, . . . , xn],
and let degXi

denote the total degree in the variables
contained in Xi. Then we define >q as follows:

In case degXi
(a) = degXi

(b)∀i, a >q b : ⇐⇒ a >h b,
otherwise a >q b if and only if ∃j ∈ {0, . . . , d} with
degXj

(a) > degXj
(b) and degXi

(a) = degXi
(b) ∀i < j.



Then the orderings >p, >q are topological.

Proof. Let >∈ {>q, >p}, g a gate, xo the output of g,
and xk1 , . . . , xkr the inputs of g (for some r). Then for all
j ∈ {1, . . . , r} we have, that

rank(xkj ) ≥ rank(xo) + 1 > rank(xo).

Since > has the elimination property for Xrank(xo) restricted
to Z2[Xi|i ≥ rank(xo)], xo is bigger than every monomial
and in xk1 , . . . , xkn . So the topological condition for g is
fulfilled.

Section 5 will show the practical meaning of the rank func-
tion and the optimized topological ordering.

4.3 Formal equivalence checking
Formal equivalence checking is a quite important part of

the verification process. Given two integrated circuits, one
has to prove, that they yield the same output on the same
input signals [26].

This technique does not prove, whether the circuit actu-
ally does, what it is supposed to do. It just checks, that the
output signals form the same Boolean function. Equivalence
checking usually takes place after small design steps: For
instance, after applying an optimization to the integrated
circuit it is necessary to check, that the optimization did
not alter the behaviour of the integrated circuits. Usually
these modifications are quite subtle, s. th. major parts of the
original design structure are preserved. In this way typical
tools for equivalence checking use exactly these structural
similarity to make this comparison very fast. On the other
hand, usually these tools are not suited for comparing two
circuits, that were constructed independently.

Algebraic methods can combine the advantages of the two
methods to some extent. The circuits are usually given only
with identified input variables. Of course, if we have poly-
nomials x + f and y + f with leading monomials x and y,
then we can replace all occurrences of x in the equations
by y. This reduces the number of variables (using the simi-
lar structure) and makes further optimizations possible. In
PolyBoRi, the eliminate_identical_variables op-
tion exists for applying this technique.

Usually equivalence checking is combined with other veri-
fication methods, that really verify the behaviour or prop-
erties of the respective circuits. This can consume a lot of
time. Usually having proven these properties once, design-
ers only need to check the equivalence of their work with the
previous design. It can be done in a quite decent time by
these specialized tools.

5. RESULTS
Following, we present some computational results for digi-

tal systems. We used is a Macbook Pro with a 2.5 GHz Intel
Core 2 Duo and 4 GB RAM (utilizing only one core).

First, we apply the methods from Section 3 to linear lex-
icographical lead rewriting systems from formal verification
and cryptanalysis. Then we repeat this using the optimized
variable ordering of Section 4. We start with equivalence
checking of classical multiplier designs as given in the text
books [28] and [25]. Wedler [30] provided us with bit-level
formulations of those components. In the following we call
them multiplier n × n, where n is the input bit-widths.
The viscoherencep example is part of the AIGER distribu-

tion [5]. The remaining two examples are based on crypt-
analysis problems: The CTC [17] example is due to Albrecht
[1], while the AES example was provided by Stanislav Buly-
gin. Bulygin and Brickenstein [12] have formed several series
of algebraic attacks on small scale AES/SR [14]. The reduc-
tions of Section 3 form an essential algorithmic ingredient
thereof.

The rows of Table 1 correspond to the results for these
examples. The columns of the table’s left part present the
computing time (in seconds) for Gröbner bases in Poly-
BoRi utilizing the proposed normal forms as well as the
ordinary Buchberger algorithm. The latter essentially elim-
inates variables and computes the Gröbner basis in the re-
maining ones with little extra effort. The timings for algo-
rithm 2, llnfredsb, also include the time needed to reduce
the system F using the same reduction method.

The results show that there is no unique winner. Hence it
is difficult to choose the optimal reduction strategy. More-
over, these big differences provide insight in the enormous
importance of heuristics and a wide variety of functions spe-
cialized on different kinds of polynomial systems. In this
sense, the PolyBoRi system integrates these optimized al-
gorithms in the regular Gröbner bases functions as much as
possible on a heuristic level.

On the one hand, we had showed in [9], that classical
computer algebra systems like Magma [6] and Singular [22]
cannot tackle even the 8-bit multiplier in reasonable time.
On the other hand, PolyBoRi is competitive with the SAT
solver MiniSat [18] for these applications [9]. In [8], we have
demonstrated, that the situation is similar for small scale
AES examples.

Furthermore we reordered the ring variables and com-
puted all three linear lexicographical lead reduction algo-
rithms a second time (see the right part of Table 1). Here
an optimized variable ordering was generated, which pre-
serves the leading terms of the system. This is described
in more detail in Section 4.2. The time for optimizing the
monomial ordering is included in the results.

We can see in both cryptographic examples (AES, CTC),
that the optimized variable ordering does not seem to im-
prove the situation. This was expected, since the examples
are very regularly structured, the natural ordering of vari-
ables is nearly optimal. It is not clear, whether to prefer
the variant computing a reduced Gröbner basis of F first.
But clearly, llnf∗ performs usually much better using an op-
timized topological ordering.

For the equivalence checking examples from formal veri-
fication our experiments indicate, that we can prove the
equivalence of two multipliers in a time, that is better than
exponential in the number of input bits of the integrated
circuit. Note that the total number of variables is still much
higher, e. g. 768 variables for 2× 16 input bits of the multi-
plier problem. Handling so many variables was only possible
using an optimized topological monomial ordering and the
llnf∗-algorithm for normal form computation (Section 3).

Finally, we improved the performance of the llnf∗ ap-
proach for the multiplier examples using structural optimiza-
tion. For this purpose we identify identical variables in both
integrated circuits. Table 2 compares the runtime (in sec-
onds) and the approximate input vector rate (per second)
of this approach with the best previous results. This shows,
that we improved the performance even more. It is highly
probable, that we are able to handle even larger circuits.



Table 1: Linear lexicographical lead reduction
simple topological ordering optimized variable ordering

Buchberger llnf llnf∗ llnfredsb llnf llnf∗ llnfredsb
multiplier 8× 8 0.65 3.27 12.19 3.19 0.66 0.09 0.53
multiplier 10× 10 15 891.92 >7200 627.46 891 0.32 907
multiplier 16× 16 76.05

viscoherencep5 1.5 0.075 0.076 0.18 0.29 0.29 0.32

aes 10 1 2 4 4.3 1022.85 813 0.17 1112 3636 0.27
ctc Nr3 B5 n20 73 13.05 6.2 13.03 45 9.26 22.51

Table 2: Equivalence checking using llnf∗ in optimized ordering, without and with structural optimization
original modeling structurally optimized

Example input bits variables time
input vectors

time
time

input vectors

time

multiplier 8× 8 16 204 0.09 730 000 0.07 940 000
multiplier 10× 10 20 314 0.32 3 300 000 0.14 7 500 000
multiplier 16× 16 32 768 76.05 56 000 000 23.65 180 000 000

Unfortunately, larger benchmark examples are not avail-
able to us in a suitable input format up to now. This is due
to the fact, that bit-widths around 4 bits were state of the
art for algebraic methods before we introduced topological
orderings. In [9] we have experienced, that even using these
orderings 6 × 6 is the bound for classical computer algebra
systems, while we were still able to go up to 10×10 with the
general routines of PolyBoRi. For this reason, equivalence
checking of multipliers with 16 bits or more had not been
considered as a meaningful benchmark then.

By applying the normal form of Section 3 against ZDD-
encoded digital systems we lifted the bound to 16× 16. To-
gether with the optimizations from Sections 4.2 and 4.3, we
got a time of 24 seconds on a our test system.

In Table 2 we also compared the number of possible input
vectors, for which we verified the integrated circuit, with the
number of seconds needed for the calculation. An almost
constant quotient between the number of input vectors and
computing time would be typical for a simulator and result
in an exponential complexity of the algorithm. While we
do not have any theoretical results about the asymptotic
complexity of our method, it is a promising sign, that this
quotient growths with a factor of 200 between the 8× 8 and
the 16× 16 examples.

It is well-known, that FDDs for multipliers have an ex-
ponential number of nodes [2]. Our experiments, however,
do not indicate exponential behavior. This can be inter-
preted as follows: Using the optimized topological ordering
in connection with the llnf∗ algorithm seems to lead to the
following desired effect. The proposed result from equiva-
lence checking is the zero polynomial. At the same time,
both circuits are expanded at similar signals and the terms
of the polynomial can be extinguished early in the compu-
tation. Hence, our approach avoids to compute those large
intermediate results.

6. CONCLUSIONS
Starting with a suitable data structure for Boolean poly-

nomials we proposed specialized algorithms for computing
reduced normal forms and topological variable orderings.

We have implemented this in our framework PolyBoRi.
Our implementation was used to evaluate the performance
of various approaches on benchmark examples from digital
systems. It shows, that we successfully applied algebraic
methods to selected applications from formal verification
and cryptanalysis.

In the case of equivalence checking of multiplier compo-
nents, we were able to raise the bound from a bit-width of 4
to 16. Note, that for a 16×16 multiplier the symbolic compu-
tations verify the behavior for all 232 = 4 294 967 296 input
vectors, which marks a step towards real-world applications.
Although we do not have a formal proof, our experiments
indicate that we avoid the growth of intermediate results
and do not lead to decision diagrams of exponential size for
these problems. Similar improvements of the state of the art
were achieved for the cryptanalysis problems.

Finally, we would like to remark, that this work is in no
way specific for multipliers, but applicable to the bit-level
verification of general integrated circuits and digital systems
of likewise structure.
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gorithms and Applications. PhD thesis, University of
Kaiserslautern, Germany, 2010. to appear.

[8] M. Brickenstein and A. Dreyer. PolyBoRi: A frame-
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