[1]   Brickenstein, M., 2011. Boolean Gröbner bases – theory, algorithms and applications. Ph.D. thesis, University of Kaiserslautern, Logos Verlag, Berlin, Germany, 2011.

[2]   Brickenstein, M., Dreyer, A., 2010. Network-driven Boolean Normal Forms, Preprint.

[3]   Bulygin, S., Brickenstein, M., 2010. Obtaining and solving systems of equations in key variables only for the small variants of AES. In: Mathematics in Computer Science 3 (2), 185–200.

[4]   Brickenstein, M., Dreyer, A., 2009. PolyBoRi: A framework for Gröbner-basis computations with Boolean polynomials. Journal of Symbolic Computation 44 (9), 1326–1345, Effective Methods in Algebraic Geometry.

[5]   Brickenstein, M., Dreyer, A., Greuel, G.-M., Wedler, M., Wienand, O., 2009. New developments in the theory of Gröbner bases and applications to formal verification. Journal of Pure and Applied Algebra 213 (8), 1612–1635, Theoretical Effectivity and Practical Effectivity of Gröbner Bases.

[6]   Brickenstein, M., Dreyer, A., 2008. Gröbner-free normal forms for boolean polynomials. In: Proceedings of the twenty-first international symposium on Symbolic and algebraic computation, ISSAC ’08, Linz/Hagenberg, Austria, 55–62. ACM, New York, NY, USA.