References

[1]   Brickenstein, M., 2011. Boolean Gröbner bases – theory, algorithms and applications. Ph.D. thesis, University of Kaiserslautern, Logos Verlag, Berlin, Germany, 2011.

[2]   Brickenstein, M., Dreyer, A., 2010. Network-driven Boolean Normal Forms, Preprint.
http://polybori.sourceforge.net/documents/NetworkDriven.pdf

[3]   Bulygin, S., Brickenstein, M., 2010. Obtaining and solving systems of equations in key variables only for the small variants of AES. In: Mathematics in Computer Science 3 (2), 185–200.
http://dx.doi.org/10.1007/s11786-009-0020-y

[4]   Brickenstein, M., Dreyer, A., 2009. PolyBoRi: A framework for Gröbner-basis computations with Boolean polynomials. Journal of Symbolic Computation 44 (9), 1326–1345, Effective Methods in Algebraic Geometry.
http:/dx.doi.org/10.1016/j.jsc.2008.02.017

[5]   Brickenstein, M., Dreyer, A., Greuel, G.-M., Wedler, M., Wienand, O., 2009. New developments in the theory of Gröbner bases and applications to formal verification. Journal of Pure and Applied Algebra 213 (8), 1612–1635, Theoretical Effectivity and Practical Effectivity of Gröbner Bases.
http://dx.doi.org/10.1016/j.jpaa.2008.11.043

[6]   Brickenstein, M., Dreyer, A., 2008. Gröbner-free normal forms for boolean polynomials. In: Proceedings of the twenty-first international symposium on Symbolic and algebraic computation, ISSAC ’08, Linz/Hagenberg, Austria, 55–62. ACM, New York, NY, USA.
http://doi.acm.org/10.1145/1390768.1390779