[1] Brickenstein, M., 2011. Boolean Gröbner bases – theory, algorithms and applications. Ph.D. thesis, University of Kaiserslautern, Logos Verlag, Berlin, Germany, 2011.
[2] Brickenstein, M., Dreyer, A., 2010. Network-driven Boolean Normal Forms, Preprint.
http://polybori.sourceforge.net/documents/NetworkDriven.pdf
[3] Bulygin, S., Brickenstein, M., 2010. Obtaining and solving systems of equations in key variables only
for the small variants of AES. In: Mathematics in Computer Science 3 (2), 185–200.
http://dx.doi.org/10.1007/s11786-009-0020-y
[4] Brickenstein, M., Dreyer, A., 2009. PolyBoRi: A framework for Gröbner-basis computations with
Boolean polynomials. Journal of Symbolic Computation 44 (9), 1326–1345, Effective Methods in
Algebraic Geometry.
http:/dx.doi.org/10.1016/j.jsc.2008.02.017
[5] Brickenstein, M., Dreyer, A., Greuel, G.-M., Wedler, M., Wienand, O., 2009. New developments
in the theory of Gröbner bases and applications to formal verification. Journal of Pure and Applied
Algebra 213 (8), 1612–1635, Theoretical Effectivity and Practical Effectivity of Gröbner Bases.
http://dx.doi.org/10.1016/j.jpaa.2008.11.043
[6] Brickenstein, M., Dreyer, A., 2008. Gröbner-free normal forms for boolean polynomials. In:
Proceedings of the twenty-first international symposium on Symbolic and algebraic computation, ISSAC
’08, Linz/Hagenberg, Austria, 55–62. ACM, New York, NY, USA.
http://doi.acm.org/10.1145/1390768.1390779